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Abstract. We propose a physical interpretation fopadic picture of reality. According to this
interpretation,p-adic numbers describe measurements with a finite accuracy (at the same time,
real numbers describe measurements with an infinite accuracy). We consider the representation
of the position operator in @-adic Hilbert space and study the spectrum of this operator.

1. Introduction

In the present paper we continue our investigations praaic Hilbert space representation

of quantum operators (see [1-5] for the first steps in this direction; see, for example,
[6-9] for p-adic numbers and non-Archimedean analysis). We try to realize the following
program. Consider the formal differential expressiﬁh = H(d,,x;) of operators of
guantum mechanics or quantum field theory. Let us realize this formal expression as a
differential operator with variables; belonging to the field ofp-adic numbersQ, and

study the properties of this operator irpaadic Hilbert space. In [5] we have constructed a
representation of the one-dimensional Wey! group inthespace with respect to p-adic
Gaussian distribution [1, 4]. This representation differs radically from the ‘ordinary one’ in

a complex Hilbert space (described by Weyl, von Neuman and others, see, for example,
[10]). In particular, the operators of positiagnand momentunp are bounded in the-adic
Ly-space.

In the present paper we study the spectrum of the position operator. The main problem
is to find the spectral set of this operator. This problem is sufficiently complicated and it is
not yet solved completely. A% is bounded, we know that its spectrum is a proper subset
of Q,. It is contained in the ball of the radius, = ||Z||. At the moment we cannot give
the answer to the question: Does the spectrur abincide with the ball of radiug, ?

We have only proved that (in the cages# 2) the ball of radiusp~Y/?»~D ), belongs
to the spectrum oft. The situation outside of this ball as well as the situation in the case
p = 2 is not clear. Our proof is based on the point-wise propertiek,efunctions. Here
the difference between the casps= 2 andp # 2 is crucial. In the case # 2 all
L,-functions are analytic on the ball of some radius which depends on the covariance of
the p-adic Gaussian distribution.

Our investigations on spectral properties of thv@adic position operator gives us the
possibility to present the following physical interpretation feadic quantum modelsp-
adic numbers describe only measurements with a finite exactness.

Therefore, thep-adic description extends essentially the quantum principle based on
the Heisenberg-type uncertainty relatiomsit only might incompatible observables not be
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measured simultaneously with an infinite exactness, but also each singular observable might
not be measured with an infinite exactness. The physical interpretation proposed in the
present paper seems to be important for all of thadic mathematical physics [11-22]
where the problem of interpretation has hindered further developments.

2. Numbers corresponding to the finite exactness of measurement

We always use real numbers to describe measurement procedures both in classical and
guantum physics. This ‘real description’ has been used for a long time (at least since
Galilei’s work). Now practically nobody pays attention to one sufficiently strange aspect
of the real formalism. Here we operate with physical quantities which might be measured
with an infinite exactness. A real number has an infinite number of decimal digits and (at
least theoretically) all these digits might be measured. However, every concrete experiment
permits only a finite exactness of a measurement.

Is it possible to include this fixed exactness in a mathematical formalism? We shall try
to do this.

What can we get in a measuremeift Let us choose the unit of a measurement to be
1 and let us fix a natural number (corresponding to the scale of this measurement). As
results ofS we can obtain only quantities of the form

X_ X_
x=‘:+"'+fl+xo+"'+xsms 1)
m m

wherex; =0, 1,...,m — 1 are digits in our scale. Denote the set of all sudby Q,, fin.

Moreover, we could not approach an arbitrary finite exactness here exists a fixed
numberk = k(S) such that the limit exactness 6fis equal t08(S) = 1/m*. This means
that we can be sure only in the digit, but the next digitx_.1, is not well defined inS
(in this fixed scale).

We wish to create a number system which describes only finite exactness of
measurements. The set of ‘physical numbegs, s, will be taken to be the basis of
our considerations.

First, we are interested in the construction of the field of real numiRersn the
basis of 0, ri». The field R is the completion ofQ,, i, with respect to the real metric
p(x,y) = |x — y| corresponding to the usual absolute value (valuatjorj) This metric
describes absolute values of physical quantities (with respect to the fixed coordinate system).
However, absolute values are not so important in quantum experiments. The exactness of
a measurement is more important. We define@n s, a new valuation corresponding to
the exactness(S).

Set|x|,, = m* for x given by equation (1); (we assume that, # 0).

It is a valuation:

e |x|,, > 0and|x|, =0iff x =0;

o |X Y|m < 1X|mlYlm;

o |x + ylm < max(|x|., |yln) (the strong triangle inequality which implies the ordinary
triangle inequality).

Setp,(x, y) = |x — y|,» and complete&,, s, with respect to this metric Denote this
complete metric space b@,, (m-adic numbers). This is a ring with respect to extensions
of the usual operations of addition and multiplication.nif= p is a prime number, then
Q, is a field (of p-adic numbers). The field op-adic numbers is more well known in
mathematics than the rings ef-adic numbers, see [6]. Of course, it would be better to

T This is the so-called ultrametric, i.e. the strong triangle inequality y) < max(r(x, z), r(z, y)) holds.
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work in a field than in a ring. However, from the physical point of view it is better to
present the general scheme usingadic numbers.

For anyx € Q,, we have a unique canonical expansion (converging in thg-norm)
of the form

Xx=x_p/m" 4+ +xo+-+xm+--. )
wherex; = 0,1,...,m — 1, are the ‘digits’ of them-adic expansion. This expansion
contains only a finite number of digits corresponding to negative powers e interpret
these numbers as providing a description of the finite exactness of a measurement. However,
the expansion (2) shows that there is a new element imtiaglic description which is not
present in the description of real numbers. There exist quantities described by (2) with an
infinite number of digits corresponding to positive powers:0it is very natural to consider
such quantities as infinite quantities (with respect to our fixed unit 1). At the moment, we
are not sure that such quantities might be useful in physics. However, there is always the
possibility to restrict our attention to finite results.

Now the difference between real amdadic descriptions of measurement is clear. If the
exactness is infinite and the values of all observables are finite, then we have the real number
description. If the exactness is finite and some values of observables may be infinite, then
we have then-adic number description.

Here m plays the role of a parameter characterizing the structure of the fixed scale.
Different scales are useful for different experiments. However, differeatlic descriptions
are (more or less) equivalent from the physical point of view. The exacti&ys= 1/2¢
(the 2-adic description) can be realized 86S) = 1/3' (of course, not exactly but this
suffices for applications). However, at the same time the r@gsand Q,,, m # m', are
not isomorphic. Thus, there is no mathematical equivalence of the descriptions.

As usual, we define balls in the metric spa@¢, : U,(a) = {x € Q) : pn(x,a) <
rh,r=p", m=0,4+1 42 ... and sphered/,(a) = {x € Q,, : pn(x,a) = r}. These sets
are closed and open at the same time. Thus our Euclidean intuition does not work in this
case. It is important to notice that the balls(0) are additive subgroups @p,,. Moreover,
the ballZ,, = U4;1(0) is a ring, the ring ofn-adic integers (canonicak-adic expansions of
these numbers contain only non-negative powerg pf

Besides the strong triangle inequality we shall often use the following property of the
p-adic valuation:

la +b|p = max(|a|,,, |b|p) if |a|p # |b|p- (3)
We shall often use the equality
In!l, = p(n—Sn)/(l—P) (4)

wheren =3, n;p’ ands, = >_;nj [6,7] and we use the following lemma.

Lemma 2.1l S <S8+ S.

The proof can be achieved by observing that the binomial coefficitit (@ — b)! is
an integer and, therefore, igsadic norm is less or equal to 1.

3. Pointwise properties of L,-functions

Let b be a p-adic number,b # 0, the p-adic Gaussian distributiom, is defined as a
Qp-linear functional (on the space of polynomials) by its moments

Mo, =/x2"vb(dx) = (2n)! b
nl2n

7

n € Ny
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with Ng = {0} UN;
M2,,+1 = /x2"+1 vb(dx) =0 ne No.

We can extend the integration with respectijoto some class of analytic functions
from balls of 0, to Q,. Let g(x) = Y o2 ya.x", a, € Q,, be an analytic function on a ball
U, i.e. such that the termg;|,7* — 0, whenk — oo. Then by definition

o0
/ gy (dx) =Y " a,M,. ®)
n=0
The following costant
_» [1P]
9 = p1/2(1 p [1Plp
121,

will often be used in our paper.

Lemma 3.1 Let g be analytic onU,; if t > 6 then the integral of equation (5) is
convergent.

The proof is based on the estimate of th@dic norm of the factorial.
Now let us introduce the analogue of Hermite polynomials@n
nl [n/2] (_1)kx1172kbk
H, = A
b= 2 Kl (n — 2k)12%
In the spaceP(Q,) of Q,-polynomials we introduce the inner producf, g) =
[ fx)g(x)vp(dx). The polynomialsH, , verify the following othogonal conditions with
respect to this inner product:

(6)

/Hm,b(x)Hn,b(x)Vb(dx) = §pun!/b". @)
Any f € P(Q,) can be written in the following way:
f= Z JnHyp(x). ©)

We introduce the norm| f[|> = max, |f,l3|n!|/|bl} and we defineL2(Q,.v,) as the
completion of P(Q,) with respect to] . |.

Theorem 3.1 The spacd.»(Q,, vp) is the set
{f(x) = anHn_;,(x), fr€0,: the seriesz | f?n!/b" converge inQ,,}.
n=0 n=0

For f € Lo(Q,, vp) We set
ol (f) = ful5In /b",
where f,, are the Hermite coefficients of given by the expression

bn
Jo= ; / f(x)Hn,b(x)vb,p(dx)- (9)

We formally define the following map,

[o%e] b
AGx) =Y oy (1) Hip () vy ()
m=0""""
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which formally verifies the following relation for any map e Lo(Q,, vp):
/A(?», x) f(x)vp(dx) = f(R).
Now we wish to study the relations betweks(Q,, v,) functions and analytic functions.

Theorem 3.2 Assumep # 2. Let f € Lo(Q,,vp). Then f is analytic in each ball of
radiust < 6. Conversely, iff is analytic inU,, andt > 6, then f € Lo(Q,, vy).

Proof. If f € Lx(Qp, ), then, by using the explicit expression of ti, ,(x)
polynomials, we have

FO) =" fuHup(x) = ¢!
n=0 j=0

where the coefficients; are

1 & fira(G 426!
= bijl 2 J(—Zb)Zkk!

Now, since

11 1+ 2K)![p b1}/
lejly < - o max| firal, VIG + 201
TS bl Ity kTR gt P 1k, 120

and the fact thaif € L2(Q,, vy), we get
1/2

lejlp < IIfIIf max./|(Jj +2k)'|p x
bl |n 'Ip k k'|2|

By using equation (4), we can show that

J/2(p=1

leilp < 1f1 -
J\p fp(|b|p)J/2

which, in turn, completes the proof. O

Conversely, iff is analytic inU,, we formally compute the cofficients gf written on
Hermitian polinomials, which are
o0
" " (14 2m)!
I
which satisfy the requirement
o2(f) =0 whenn — oo

whent > 6. It is possible that our estimates are not the best ones.
Now we wish to discuss the possibility to extend the integral$0Q,, v;) functions.
Since every functiory € L>(Q,, v;) is analytic inU,, whent < 6 we can define

/ fx)vp(dy) = f D eix/vy(d) (10)
J

by re-arranging the series where it is convergent. On the other hand, if we define the integral
of f e Lo(Q,,vp) by

/f(X)Vh(dX) /fn Hy 5 (x)vp(dx) (11)

n=0
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by using the orthogonal relations between the Hermitian polynomials we obtain

/f(x)vb(dx) = fo.

Theorem 3.3 Let f € L2(Q,, vy) be analytic on the ball’;; then, the two definitions of
the integrals given by equations (10) and (11) coincide.

4. On the spectral set of the position operator

Using the pointwise properties df,-functions, we may prove that the set of|A|, < 0,
belongs to the spectrum of the position operator (in the gage2). At the moment, it is
not clear whether this set is a proper subset of the spectrum or the whole spectrum.

Theorem 4.1 Letp # 2 and let|A|, < 6. ThenA belongs to the spectrum of the position
operatorz.

Proof.  Consider the equatiof@ — 1) f (x) = 1 in the spacd.»(Q,, v»). By theorem 3.2

we have thatf is analytic on the ball of radius wheret < 6. We can choose > [A].

Thus, this equation can be considered as the equation for analytic functions on the. ball

Of course, this equation has no solution in the space of analytic functions and consequently
in the standard.,-space. O

In quantum mechanics over the real numbers, the point spectrum of the position operator
is empty, i.e.x has no eigenvalues € R. If we consider the standard representation of
in the spacd.,(R, dx), then the equation

xfo.(x) = 1fo.(x) (12)

has no solutions inL,(R, dx) for any A € R. Here, in fact, f3(x) = §(x — 1), but the
s-function does not belong th,(R, dx).

If we change the representation and reafizas the multiplication operator in the space
Ly(R, vp), the situation does not change essentially. The equation (12) does not have any
solution f, € Lo(R, vp).

In this section we shall show that theadic picture does not differ from the real one.

ISR

Theorem 4.2  Let p # 2. Then the point spectrum of the position operator:
Lo(Qp, vp) — L2(Q,, vp) is the empty set.

The proof of this theorem is rather long. We divide it into a few steps. As usual
in p-adic analysis, the casp = 2 is exceptional. There we shall prove thathas no
eigenvalues outside of the sphefig0). On this sphere our proof does not work.

Lemma 4.1 Suppose that the equation (12) has a non-zero solytjobhelonging to
L2(Q,,vy). Then we have the following formula for the Hermite coefficierfis, of the
function f; :

b [n/2] (_1)kkn72kbk
= —H,,(\) = - 13
Fon =y s ) ; ki(n — 2k)12k (13)

where we have choosen the normalization constaat/ f; (x)vs ,(dx) = 1.
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Proof.  Using equation (12), we gefx* £, (x)v,, ,(dx) = A*. To obtain formula (13), it
suffices to use the general formula (9) for Hermite coefficients. O

Proposition 4.1  The pointix = 0 does not belong to the point spectrum of the position
operatorz.

Proof.  Using (13), we havefy an+1 = 0 and fo 2, = (=1)"0™/2"m!,m =0,1,.... We
obtain
05, (fo) = 121,2"12m! fm1?|, = |2] 2" pSen=25/p 7L,

Now we show that there exists a subsequemeg;®, such thatr,,, does not approach to
zero fork — oco. It suffices namely to choose, = p*. Here if p # 2, then Sopk = 2,
i.e. Spr — 25, = 0. Thus, Ozzpk(fo) = 1 for all k. If p = 2, then Sy = Sx, i.e

Sy — 28y = —1. Thus,02..(fo) = 2271, O

Furthermore, we shall prove that for smial|,,, the behaviour of the Hermite coefficients
fi2p¢ coincides with the behaviour ofp o,«.

Lemma 4.2 Let|r|, <6, then
[ fr2ptlp = | fo,2p% 1 p- (14)

Proof.  We shall use the property (3) of theadic valuation. We rewrite the expression
(13) for the Hermite coefficients in the form

e (=D)iAZipmi l
from = D" =>a.
j=0 j=0

(m— D@2

Hereap = foon. Furthermore, we rewrite;, j = 1,...,m, in the form
a2\’ m!
C— —1/ .
4 =1 ( b ) (m— )2

By (4) we get
Iml/(m — IR, = pl/ @D pSenp/(p=D
whereS(m, j) = S, — Su—j — S2;. Finally, we have
lajlp = laol(111/6)% p*m-D/P=.

We always haves,,_; + S,; > 1. If m = p*, thenS,, = 1. Hence, in this cas§(m, j) < 0.
Thus,|a;|, < laol, forall j =1,..., p*. O

Lemma 4.3 If p # 2, then the equality (14) is also valid on the sph&s€0).

Proof. It suffices to show thaS(m, j) <O forall j =1,...,m = p*. If j # m, then
S2; 2 1andS,_; > 1. If j =m, thenS,,_; =0, butS,; > 2 (because ifS,; = 1, then
2j = ph). O
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Remark This proof does not work in the cage= 2. Here Sy+1 = Sx.

Heuristically it is evident that the term with the maximal powerah (13), namely
AZm
2m!
has to dominate for respectively largd,. First of all, we study the.,-behaviour of these
coefficients.

(15)

am =

Lemma 4.4 The functiong,(x) = ijzoamHz,,,,h(x) does not belong to the space
L>(Q,, vy) for all & satisfying the inequalityr|, > 6.

Proof. By (4) we have
05 (82) = A" /112" [2mY], = (1A, /6)*" (2], p~Senl P=D),

Setm = p*, then S, = 2 for p # 2 and Sy+2 = 1 for p = 2. In any case
o2,k(82) 7 0,k — oo, if |A|, > 0. U

Lemma 4.5 |If |A|, > 0, then|f, o,x], = lanl, for sufficiently largek.

Proof. It is more convenient to rewrite the Hermite coefficients in the form
m ky 2m—2k 1,k m
(=Dkx b
f)»,Zm = E k'(2 — 2k)|2k = k§:0 Am—k-

k=0
We show that the term,, strictly dominates in this sum. Lét=1,..., m. We have
|an|, = 122" /2m" |, |B* /2502, | 2m) /KL (2m — 2K)Y .

By (4) we get|2m!/k!(2m — 2k)!|, = p~*/ P~V pAmL/P=D "where A(m, k) = Sz — Sk —
Satn—t)- Hence we geta,, |, = lanl,(©/I1],)% pAb/e=D.

Now setm = p'. Consider the case # 2. Here S, = 2. If m # k, then
Sk + Som—iry = 2 and, consequentlyd (m, k) < 0. Now letm = k, then S,y = 0 and
Som — Sw = 1. Hence,pAt:0/(r= = p/»p=D Thus, we havea,, |, = la.|(@/|x],)* for
k=1,...,m—1, andlaol, = lan|,0/Ir,)?" p¥ P~V As |A|, > 6, both these quantities
are less therja,|, for sufficiently largem = p’. Now consider the casp = 2. Here
Som = S = L If k #£m, thenS, + Som—t) = 2. If Kk =m, thenA(m, k) =0. Il

Proof of theorem 4.2 If |A|, < 6, then the termuy = f>, 0 dominates and we have
| fr2mlp = | foom fOr m = p*. We need only to use proposition 4.1. |K|, > 6, then the
term g, dominates andf;, 2, = laml, for m = p*. Thus, we need only to use the last
lemma to conclude. O

In the same way we prove

Theorem 4.3 Let p = 2 andx ¢ S4(0), then i is not an eigenvalue of the position
operatorz.
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