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Abstract. We propose a physical interpretation for ap-adic picture of reality. According to this
interpretation,p-adic numbers describe measurements with a finite accuracy (at the same time,
real numbers describe measurements with an infinite accuracy). We consider the representation
of the position operator in ap-adic Hilbert space and study the spectrum of this operator.

1. Introduction

In the present paper we continue our investigations on ap-adic Hilbert space representation
of quantum operators (see [1–5] for the first steps in this direction; see, for example,
[6–9] for p-adic numbers and non-Archimedean analysis). We try to realize the following
program. Consider the formal differential expressionĤ = H(∂xj

, xj ) of operators of
quantum mechanics or quantum field theory. Let us realize this formal expression as a
differential operator with variablesxj belonging to the field ofp-adic numbersQp and
study the properties of this operator in ap-adic Hilbert space. In [5] we have constructed a
representation of the one-dimensional Weyl group in theL2-space with respect to ap-adic
Gaussian distribution [1, 4]. This representation differs radically from the ‘ordinary one’ in
a complex Hilbert space (described by Weyl, von Neuman and others, see, for example,
[10]). In particular, the operators of position̂x and momentum̂p are bounded in thep-adic
L2-space.

In the present paper we study the spectrum of the position operator. The main problem
is to find the spectral set of this operator. This problem is sufficiently complicated and it is
not yet solved completely. Aŝx is bounded, we know that its spectrum is a proper subset
of Qp. It is contained in the ball of the radiusλx = ‖x̂‖. At the moment we cannot give
the answer to the question: Does the spectrum ofx̂ coincide with the ball of radiusλx?

We have only proved that (in the casep 6= 2) the ball of radiusp−1/2(p−1)λx belongs
to the spectrum of̂x. The situation outside of this ball as well as the situation in the case
p = 2 is not clear. Our proof is based on the point-wise properties ofL2-functions. Here
the difference between the casesp = 2 and p 6= 2 is crucial. In the casep 6= 2 all
L2-functions are analytic on the ball of some radius which depends on the covariance of
the p-adic Gaussian distribution.

Our investigations on spectral properties of thep-adic position operator gives us the
possibility to present the following physical interpretation forp-adic quantum models:p-
adic numbers describe only measurements with a finite exactness.

Therefore, thep-adic description extends essentially the quantum principle based on
the Heisenberg-type uncertainty relations:not only might incompatible observables not be
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measured simultaneously with an infinite exactness, but also each singular observable might
not be measured with an infinite exactness. The physical interpretation proposed in the
present paper seems to be important for all of thep-adic mathematical physics [11–22]
where the problem of interpretation has hindered further developments.

2. Numbers corresponding to the finite exactness of measurement

We always use real numbers to describe measurement procedures both in classical and
quantum physics. This ‘real description’ has been used for a long time (at least since
Galilei’s work). Now practically nobody pays attention to one sufficiently strange aspect
of the real formalism. Here we operate with physical quantities which might be measured
with an infinite exactness. A real number has an infinite number of decimal digits and (at
least theoretically) all these digits might be measured. However, every concrete experiment
permits only a finite exactness of a measurement.

Is it possible to include this fixed exactness in a mathematical formalism? We shall try
to do this.

What can we get in a measurementS? Let us choose the unit of a measurement to be
1 and let us fix a natural numberm (corresponding to the scale of this measurement). As
results ofS we can obtain only quantities of the form

x = x−k

mk
+ · · · + x−1

m
+ x0 + · · · + xsm

s (1)

wherexj = 0, 1, . . . , m − 1 are digits in our scale. Denote the set of all suchx by Qm,f in.

Moreover, we could not approach an arbitrary finite exactness inS. There exists a fixed
numberk = k(S) such that the limit exactness ofS is equal toδ(S) = 1/mk. This means
that we can be sure only in the digitx−k but the next digitx−(k+1) is not well defined inS
(in this fixed scale).

We wish to create a number system which describes only finite exactness of
measurements. The set of ‘physical numbers’Qm,f in will be taken to be the basis of
our considerations.

First, we are interested in the construction of the field of real numbersR on the
basis ofQm,f in. The field R is the completion ofQm,f in with respect to the real metric
ρ(x, y) = |x − y| corresponding to the usual absolute value (valuation)| · |. This metric
describes absolute values of physical quantities (with respect to the fixed coordinate system).
However, absolute values are not so important in quantum experiments. The exactness of
a measurement is more important. We define onQm,f in a new valuation corresponding to
the exactnessδ(S).

Set |x|m = mk for x given by equation (1); (we assume thatx−k 6= 0).
It is a valuation:
• |x|m > 0 and|x|m = 0 iff x = 0;
• |x y|m 6 |x|m|y|m;
• |x + y|m 6 max(|x|m, |y|m) (the strong triangle inequality which implies the ordinary

triangle inequality).
Setρm(x, y) = |x − y|m and completeQm,f in with respect to this metric†. Denote this

complete metric space byQm (m-adic numbers). This is a ring with respect to extensions
of the usual operations of addition and multiplication. Ifm = p is a prime number, then
Qp is a field (of p-adic numbers). The field ofp-adic numbers is more well known in
mathematics than the rings ofm-adic numbers, see [6]. Of course, it would be better to

† This is the so-called ultrametric, i.e. the strong triangle inequalityr(x, y) 6 max(r(x, z), r(z, y)) holds.
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work in a field than in a ring. However, from the physical point of view it is better to
present the general scheme usingm-adic numbers.

For anyx ∈ Qm we have a unique canonical expansion (converging in the| · |m-norm)
of the form

x = x−n/mn + · · · + x0 + · · · + xkm
k + · · · (2)

where xj = 0, 1, . . . , m − 1, are the ‘digits’ of them-adic expansion. This expansion
contains only a finite number of digits corresponding to negative powers ofm. We interpret
these numbers as providing a description of the finite exactness of a measurement. However,
the expansion (2) shows that there is a new element in them-adic description which is not
present in the description of real numbers. There exist quantities described by (2) with an
infinite number of digits corresponding to positive powers ofm. It is very natural to consider
such quantities as infinite quantities (with respect to our fixed unit 1). At the moment, we
are not sure that such quantities might be useful in physics. However, there is always the
possibility to restrict our attention to finite results.

Now the difference between real andm-adic descriptions of measurement is clear. If the
exactness is infinite and the values of all observables are finite, then we have the real number
description. If the exactness is finite and some values of observables may be infinite, then
we have them-adic number description.

Here m plays the role of a parameter characterizing the structure of the fixed scale.
Different scales are useful for different experiments. However, differentm-adic descriptions
are (more or less) equivalent from the physical point of view. The exactnessδ(S) = 1/2k

(the 2-adic description) can be realized asδ′(S) = 1/3l (of course, not exactly but this
suffices for applications). However, at the same time the ringsQm andQm′ , m 6= m′, are
not isomorphic. Thus, there is no mathematical equivalence of the descriptions.

As usual, we define balls in the metric spaceQm : Ur(a) = {x ∈ Qm : ρm(x, a) 6
r}, r = pm, m = 0, ±1, ±2, . . . and spheresUr(a) = {x ∈ Qm : ρm(x, a) = r}. These sets
are closed and open at the same time. Thus our Euclidean intuition does not work in this
case. It is important to notice that the ballsUr(0) are additive subgroups ofQm. Moreover,
the ballZm = U1(0) is a ring, the ring ofm-adic integers (canonicalm-adic expansions of
these numbers contain only non-negative powers ofm).

Besides the strong triangle inequality we shall often use the following property of the
p-adic valuation:

|a + b|p = max(|a|p, |b|p) if |a|p 6= |b|p. (3)

We shall often use the equality

|n!|p = p(n−Sn)/(1−p) (4)

wheren = ∑
j njp

j andSn = ∑
j nj [6, 7] and we use the following lemma.

Lemma 2.1. Sj+k 6 Sj + Sk.

The proof can be achieved by observing that the binomial coefficienta!/b!(a − b)! is
an integer and, therefore, itsp-adic norm is less or equal to 1.

3. Pointwise properties ofL2-functions

Let b be a p-adic number,b 6= 0, the p-adic Gaussian distributionνb is defined as a
Qp-linear functional (on the space of polynomials) by its moments

M2n =
∫

x2nνb(dx) = (2n)!
bn

n!2n
n ∈ N0
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with N0 = {0} ∪ N;

M2n+1 =
∫

x2n+1 νb(dx) = 0 n ∈ N0.

We can extend the integration with respect toνb to some class of analytic functions
from balls ofQp to Qp. Let g(x) = ∑∞

n=0 anx
n, an ∈ Qp, be an analytic function on a ball

Uτ , i.e. such that the terms|ak|pτ k → 0, whenk → ∞. Then by definition∫
g(x)νb(dx) =

∞∑
n=0

anMn. (5)

The following costantθ

θ ≡ p1/2(1−p)

√
|b|p
|2|p

will often be used in our paper.

Lemma 3.1. Let g be analytic onUτ ; if τ > θ then the integral of equation (5) is
convergent.

The proof is based on the estimate of thep-adic norm of the factorial.
Now let us introduce the analogue of Hermite polynomials onQp.

Hn,b(x) = n!

bn

[n/2]∑
k=0

(−1)kxn−2kbk

k!(n − 2k)!2k
. (6)

In the spaceP(Qp) of Qp-polynomials we introduce the inner product(f, g) =∫
f (x)ḡ(x)νb(dx). The polynomialsHn,b verify the following othogonal conditions with

respect to this inner product:∫
Hm,b(x)Hn,b(x)νb(dx) = δnmn!/bn. (7)

Any f ∈ P(Qp) can be written in the following way:

f =
∑

fnHn,b(x). (8)

We introduce the norm‖f ‖2 = maxn |fn|2p|n!|/|b|np and we defineL2(Qp, νb) as the
completion ofP(Qp) with respect to‖ . ‖.

Theorem 3.1. The spaceL2(Qp, νb) is the set{
f (x) =

∞∑
n=0

fnHn,b(x), fn ∈ Qp : the series
∞∑

n=0

|fn|2n!/bn converge inQp

}
.

For f ∈ L2(Qp, νb) we set

σ 2
n (f ) = |fn|2p|n!/bn|p

wherefn are the Hermite coefficients off given by the expression

fn = bn

n!

∫
f (x)Hn,b(x)νb,p(dx). (9)

We formally define the following map,

1(λ, x) =
∞∑

m=0

bm

m!
Hm,b(λ)Hm,b(x)νb(dx)
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which formally verifies the following relation for any mapf ∈ L2(Qp, νb):∫
1(λ, x)f (x)νb(dx) = f (λ).

Now we wish to study the relations betweenL2(Qp, νb) functions and analytic functions.

Theorem 3.2. Assumep 6= 2. Let f ∈ L2(Qp, νb). Thenf is analytic in each ball of
radiusτ < θ . Conversely, iff is analytic inUτ , andτ > θ , thenf ∈ L2(Qp, νb).

Proof. If f ∈ L2(Qp, νb), then, by using the explicit expression of theHn,b(x)

polynomials, we have

f (x) =
∞∑

n=0

fnHn,b(x) =
∞∑

j=0

cjx
j

where the coefficientscj are

cj = 1

bj j !

∞∑
k=0

fj+2k(j + 2k)!

(−2b)2kk!
.

Now, since

|cj |p 6 1

|b|p
1

|n!|p max
k

|fj+2k|p
√

|(j + 2k)!|P
|b|j+2k

p

√|(j + 2k)!|p |b|j/2
p

|k!|p|2|kp
and the fact thatf ∈ L2(Qp, νb), we get

|cj |p 6 ‖f ‖ 1

|b|p
1

|n!|p max
k

√|(j + 2k)!|p |b|j/2
p

k!|2|kp
.

By using equation (4), we can show that

‖cj |p 6 |f |p 1

(|b|p)j/2
pj/2(p−1)

which, in turn, completes the proof. �
Conversely, iff is analytic inUτ , we formally compute the cofficients off written on

Hermitian polinomials, which are

fn = bn

n!
(−1)n

∞∑
m=0

cn+2mbm (n + 2m)!

2mm!

which satisfy the requirement

σ 2
m(f ) → 0 whenn → ∞

whenτ > θ . It is possible that our estimates are not the best ones.
Now we wish to discuss the possibility to extend the integral toL2(Qp, νb) functions.

Since every functionf ∈ L2(Qp, νb) is analytic inUτ , whenτ < θ we can define∫
f (x)νb(dx) =

∫ ∑
j

cj x
j νb(dx) (10)

by re-arranging the series where it is convergent. On the other hand, if we define the integral
of f ∈ L2(Qp, νb) by∫

f (x)νb(dx) =
∞∑

n=0

∫
fnHn,b(x)νb(dx) (11)
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by using the orthogonal relations between the Hermitian polynomials we obtain∫
f (x)νb(dx) = f0.

Theorem 3.3. Let f ∈ L2(Qp, νb) be analytic on the ballUτ ; then, the two definitions of
the integrals given by equations (10) and (11) coincide.

4. On the spectral set of the position operator

Using the pointwise properties ofL2-functions, we may prove that the set ofλ, |λ|p < θ ,
belongs to the spectrum of the position operator (in the casep 6= 2). At the moment, it is
not clear whether this set is a proper subset of the spectrum or the whole spectrum.

Theorem 4.1. Let p 6= 2 and let|λ|p < θ . Thenλ belongs to the spectrum of the position
operatorx̂.

Proof. Consider the equation(x̂ − λ)f (x) = 1 in the spaceL2(Qp, νb). By theorem 3.2
we have thatf is analytic on the ball of radiusτ whereτ < θ. We can chooseτ > |λ|.
Thus, this equation can be considered as the equation for analytic functions on the ballUτ .

Of course, this equation has no solution in the space of analytic functions and consequently
in the standardL2-space. �

In quantum mechanics over the real numbers, the point spectrum of the position operator
x̂ is empty, i.e.x̂ has no eigenvaluesλ ∈ R. If we consider the standard representation of
x̂ in the spaceL2(R, dx), then the equation

x̂fλ(x) = λfλ(x) (12)

has no solutions inL2(R, dx) for any λ ∈ R. Here, in fact,fλ(x) = δ(x − λ), but the
δ-function does not belong toL2(R, dx).

If we change the representation and realizex̂ as the multiplication operator in the space
L2(R, νb), the situation does not change essentially. The equation (12) does not have any
solutionfλ ∈ L2(R, νb).

In this section we shall show that thep-adic picture does not differ from the real one.

Theorem 4.2. Let p 6= 2. Then the point spectrum of the position operatorx̂ :
L2(Qp, νb) → L2(Qp, νb) is the empty set.

The proof of this theorem is rather long. We divide it into a few steps. As usual
in p-adic analysis, the casep = 2 is exceptional. There we shall prove thatx̂ has no
eigenvalues outside of the sphereSθ (0). On this sphere our proof does not work.

Lemma 4.1. Suppose that the equation (12) has a non-zero solutionfλ belonging to
L2(Qp, νb). Then we have the following formula for the Hermite coefficientsfλ,n of the
function fλ :

fλ,n = bn

n!
Hn,b(λ) =

[n/2]∑
k=0

(−1)kλn−2kbk

k!(n − 2k)!2k
(13)

where we have choosen the normalization constantc = ∫
fλ(x)νb,p(dx) = 1.
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Proof. Using equation (12), we get
∫

xkfλ(x)νb,p(dx) = λk. To obtain formula (13), it
suffices to use the general formula (9) for Hermite coefficients. �

Proposition 4.1. The pointλ = 0 does not belong to the point spectrum of the position
operatorx̂.

Proof. Using (13), we havef0,2m+1 = 0 andf0,2m = (−1)mbm/2mm!, m = 0, 1, . . . . We
obtain

σ 2
2m(f0) = |2|−2m

p |2m!/m!2|p = |2|−2m
p p(S2m−2Sm)/p−1.

Now we show that there exists a subsequence{mk}∞k=0 such thatσ2mk
does not approach to

zero for k → ∞. It suffices namely to choosemk = pk. Here if p 6= 2, then S2pk = 2,

i.e. S2pk − 2Spk = 0. Thus, σ 2
2pk (f0) = 1 for all k. If p = 2, then S2k+1 = S2k , i.e

S2k+1 − 2S2k = −1. Thus,σ 2
2k+1(f0) = 22k+1−1. �

Furthermore, we shall prove that for small|λ|p, the behaviour of the Hermite coefficients
fλ,2pk coincides with the behaviour off0,2pk .

Lemma 4.2. Let |λ|p < θ, then

|fλ,2pk |p = |f0,2pk |p. (14)

Proof. We shall use the property (3) of thep-adic valuation. We rewrite the expression
(13) for the Hermite coefficients in the form

fλ,2m = (−1)m
m∑

j=0

(−1)jλ2j bm−j

(m − j)!(2j)!2m−j
=

m∑
j=0

aj .

Herea0 = f0,2m. Furthermore, we rewriteaj , j = 1, . . . , m, in the form

aj = a0(−1)j
(

2λ2

b

)j
m!

(m − j)!(2j)!
.

By (4) we get

|m!/(m − j)!(2j)!|p = pj/(p−1)pS(m,j)/(p−1)

whereS(m, j) = Sm − Sm−j − S2j . Finally, we have

|aj |p = |a0|(|λ|/θ)2jpS(m,j)/(p−1).

We always haveSm−j +S2j > 1. If m = pk, thenSm = 1. Hence, in this caseS(m, j) 6 0.

Thus,|aj |p < |a0|p for all j = 1, . . . , pk. �

Lemma 4.3. If p 6= 2, then the equality (14) is also valid on the sphereSθ (0).

Proof. It suffices to show thatS(m, j) < 0 for all j = 1, . . . , m = pk. If j 6= m, then
S2j > 1 andSm−j > 1. If j = m, thenSm−j = 0, but S2j > 2 (because ifS2j = 1, then
2j = pl). �
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Remark. This proof does not work in the casep = 2. HereS2k+1 = S2k .

Heuristically it is evident that the term with the maximal power ofλ in (13), namely

am = λ2m

2m!
(15)

has to dominate for respectively large|λ|p. First of all, we study theL2-behaviour of these
coefficients.

Lemma 4.4. The functiongλ(x) = ∑∞
m=0 amH2m,b(x) does not belong to the space

L2(Qp, νb) for all λ satisfying the inequality|λ|p > θ .

Proof. By (4) we have

σ 2
2m(gλ) = |λ|4m

p /|b|2m
p |2m!|p = (|λ|p/θ)4m|2|−2m

p p−S2m/(p−1).

Set m = pk, then S2pk = 2 for p 6= 2 and S2k+1 = 1 for p = 2. In any case
σ2pk (gλ) 6→ 0, k → ∞, if |λ|p > θ . �

Lemma 4.5. If |λ|p > θ, then |fλ,2pk |p = |am|p for sufficiently largek.

Proof. It is more convenient to rewrite the Hermite coefficients in the form

fλ,2m =
m∑

k=0

(−1)kλ2m−2kbk

k!(2m − 2k)!2k
=

m∑
k=0

am−k.

We show that the termam strictly dominates in this sum. Letk = 1, . . . , m. We have

|am|p = |λ2m/2m!|p|bk/2kλ2k|p|2m!/k!(2m − 2k)!|p.

By (4) we get|2m!/k!(2m − 2k)!|p = p−k/(p−1)pA(m,k)/(p−1), whereA(m, k) = S2m − Sk −
S2(m−k). Hence we get|am−k|p = |am|p(θ/|λ|p)2kpA(m,k)/(p−1).

Now set m = pl. Consider the casep 6= 2. Here S2pl = 2. If m 6= k, then
Sk + S2(m−k) > 2 and, consequently,A(m, k) 6 0. Now let m = k, then S2(m−k) = 0 and
S2m −Sm = 1. Hence,pA(m,k)/(p−1) = p1/(p−1). Thus, we have|am−k|p = |am|(θ/|λ|p)2k for
k = 1, . . . , m − 1, and |a0|p = |am|p(θ/|λ|p)2mp1/(p−1). As |λ|p > θ, both these quantities
are less then|am|p for sufficiently largem = pl. Now consider the casep = 2. Here
S2m = Sm = 1. If k 6= m, thenSk + S2(m−k) > 2. If k = m, thenA(m, k) = 0. �

Proof of theorem 4.2. If |λ|p 6 θ, then the terma0 = f2m,0 dominates and we have
|fλ,2m|p = |f0,2m for m = pk. We need only to use proposition 4.1. If|λ|p > θ, then the
term an dominates and|fλ,2m = |am|p for m = pk. Thus, we need only to use the last
lemma to conclude. �

In the same way we prove

Theorem 4.3. Let p = 2 and λ 6∈ Sθ (0), then λ is not an eigenvalue of the position
operatorx̂.
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